33. The Oxidation-Reduction Potential of Sexa- and Quinque-valent Molybdenum Ions.

By A. Riad Tourky and H. K. El Shamy.

Sexa- and quinque-valent molybdenum ions in 8-6 and 4-2N-hydrochloric acid are found to possess the formulæ $\mathrm{MoO}_{2}{ }^{\bullet}$ and MoO^{\cdots} within the former range and $\left(\mathrm{MoO}^{\bullet}\right)_{2}$ and $\left(\mathrm{MoO}{ }^{\cdots}\right)_{2}$ within the latter. The formulæ refer, however, only to the cationic forms which are present in equilibria with other, anionic ones. Between both acid ranges there exist probably mixtures of the respective ionic species. By evaluating the redox potentials of the systems within both acid ranges and plotting them against \sqrt{u}, curves are obtained the extrapolation of which to zero ionic strength is found unjustifiable. It is therefore safer to consider as practically useful values a series of formal potentials each of which pertains to a definite acid concentration.
(I) The Formula of Sexa- and Quinque-valent Molybdenum Ions in Acid Solutions.-In studying the mechanism of the electrolytic reduction of acid molybdates, Foerster and Fricke (Z. physikal. Chem., 1930, 146, 81, 173) determined the redox potentials of sexa- and quinque-valent molybdenum ions in 2,4 , and 8 N -hydrochloric acid. They suggested a formula for the molybdenum ion in each state of oxidation and accordingly represented the half-cell reaction by : $\mathrm{MoO}_{2}{ }^{\bullet}+2 \mathrm{H}^{*}=\mathrm{MoO} \cdots+\mathrm{H}_{2} \mathrm{O}+e$, irrespective of the acidity of the solutions. The observed potentials were found, however, to differ considerably from the calculated ones, especially in 2 and 4 N -acid. This was attributed to a profound effect of the acid on molybdenum ions in solution which manifests itself further in the colour change from green to brown as the solutions pass from 8 to 2 N -acid. Now, although it may be probable that the formulæ assigned by Foerster and Fricke are valid in one range of acidity, yet it is desirable to obtain insight into the changes in constitution which accompany the change in colour. As is shown elsewhere (Tourky, Farah, and El Shamy, Analyst, 1948, 78, 258), quinquevalent molybdenum is suited for use as volumetric reagent, and this required the evaluation of the redox potential of the system $\mathrm{Mo}^{\mathrm{VI}}-\mathrm{Mo}^{\mathrm{V}}$ on a sound basis.

Wieland and Knöl (Z.anorg. Chem., 1905, 44, 181) prepared compounds to which they assigned formulæ such as $\mathrm{MoCl}_{4}(\mathrm{OCs})_{2}, \mathrm{MoOCl}_{3}(\mathrm{ORb}), \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Mo}_{6} \mathrm{O}_{11} \mathrm{Cl}_{14}, \mathrm{~K}_{2} \mathrm{O}, 6 \mathrm{H}_{2} \mathrm{O}$. By tracing the formation of the corresponding acids in concentrated hydrochloric acid solutions by transportnumber experiments it could be ascertained that molybdenum did not move in any appreciable quantity in the current, indicating that it formed part of the anionic radical(s) of an acid or acids whose ionisation was suppressed in presence of hydrochloric acid. As such, sexavalent molybdenum may be incapable of reduction unless it is transformed partly into the cationic form(s) which may therefore be assumed to be present in equilibrium by a reaction such as : $\mathrm{MoO}_{2} \mathrm{Cl}_{4}+x \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{MoO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}+4 \mathrm{Cl}^{-}$.

Analogous equilibria may prevail with respect to quinquevalent molybdenum ions (Foerster and Fricke, loc. cit.). We have now determined the equation for the molybdenum half-cell reaction, and established the most probable formulæ for the sexa- and quinque-valent molybdenum ions at different acidities, adopting a procedure similar to that used by Carpenter (J. Amer. Chem. Soc., 1934, 56, 1847) for finding the constitution of the vanadium ions.

Owing to the ease with which molybdenum-blue is formed on reduction in solutions less than 2_{N} in hydrochloric acid content, only more concentrated acid solutions were employed. This necessitated the use of a saturated calomel electrode as the other half-cell. The saturated potassium chloride bridge was assumed to reduce the liquid-junction potential to a minimum.

In each mixture the concentrations of any two constituents were kept constant while the third was varied.

Experimental.

Molybdic acid of "AnalaR" grade was dissolved in pure concentrated hydrochloric acid. The molybdenum content of the solution was determined by precipitation as sulphide and weighing as oxide. The chloride ion was determined gravimetrically as silver chloride after distilling measured portions with concentrated sulphuric acid and receiving the evolved hydrogen chloride in redistilled water.

Quinquevalent molybdenum was obtained by electrolytic reduction of solutions containing molybdic acid in 2 or 8 N -hydrochloric acid according to the method of Chelesotti (Z. Elektrochem., 1906, 12, 197), the reduction cell being essentially that proposed by Foerster and Fricke (loc. cit.). The reduction product was accurately checked by titration against standard ceric sulphate.

Solutions containing sexa- and quinque-valent molybdenum ions were made by mixing together the appropriate amounts of each solution, and the composition checked by analysis. From a determination of the total chloride and subtraction of the amount supposed to be combined, the amount of free hydrochloric acid was computed. Measurements were made on solutions approximately $6-8$ or $2-4 \mathrm{~N}$ with regard to free hydrochloric acid. In all cases the molybdenum-ion concentrations were kept low relative to the acid.

The oxidation-reduction cell used was a modified form of that used by Hart and Partington (J., 1940, 1532). The measurements were performed in a thermostat adjusted at $30^{\circ} \pm 0.02^{\circ}$, a very sensitive mirror galvanometer and a platinum-iridium meter bridge being used. The readings for each cell were taken during 24 hours. Equilibrium was usually attained after a few hours and the final results did not diverge on the average by more than 0.5 mv .

Results and Discussion.-By assuming that sexa- and quinque-valent molybdenum ions can be represented by $\mathrm{MoO}_{2}{ }^{\bullet}$ and $\mathrm{MoO}{ }^{*}$ respectively and by letting x and y represent the number of molybdenum and oxygen atoms in the former ion and z the number of molybdenum atoms in the latter, the formula of the respective ions will be $\mathrm{Mo}_{x} \mathrm{O}_{y}{ }^{6 x-2 y}$ and $\mathrm{MO}_{8} \mathrm{O}_{8}{ }^{3 z}$. The cell reaction can then be represented by

$$
\mathrm{Mo}_{x} \mathrm{O}_{y}^{6 x-2 y}+(2 y-2 x) \mathrm{H}^{\cdot}=\frac{x}{z} \mathrm{Moz}_{z} \mathrm{O}_{z}^{3 z}+(y-x) \mathrm{H}_{2} \mathrm{O}
$$

from which it follows that
the expression for water being regarded as a constant term.
Not knowing the activity coefficients of the molybdenum ions, we shall use concentrations instead of activities. Now, by keeping the concentrations of any two solutes constant and varying the third in a series of cells, we obtain three relations in which the term E_{0} will include the contribution of the first two solutes. Such relations can be represented as follows :

```
Case I. \(\quad E=\mathrm{E}_{0_{1}}+(0.0601 / x) \log \left[\mathrm{MoO}_{2}{ }^{\bullet}{ }^{\bullet}\right]\)
Case II. \(E=E_{0}+[0 \cdot 0601(2 y-2 x) / x] \log \left[\mathrm{H}^{*}\right]\)
Case III. \(E=E_{0_{1}}+(0.0601 / z) \log \left[\mathrm{MoO}^{\bullet}\right]\)
```

If E is plotted in each case as a function of the variable concentrations, approximately straight lines should result, from the slopes of which x, y, and z could be determined. Measurements were made corresponding to the three cases above, each in three series. The concentrations of the fixed and the variable constituents, together with the e.m.f. values measured and the values of x, y, or z as evaluated from the plots (of the e.m.f. against the logarithm of the concentrations of the variable constituents), which were always straight lines, are shown in the Table.

Where the normalities of hydrochloric acid varied between 6 and 8 N , it was necessary to insert activities (as obtained from Lewis and Randall, "Thermodynamics", p. 336) instead of concentrations for that acid; otherwise values for y were obtained which were quite improbable. In solutions with more dilute acid, the replacement of concentrations by activities did not materially affect the results. In the 2-4N-acid solutions, it was found that x, y, and z have nearly double the values found for them in the $6-8 \mathrm{~N}$-acid solutions.

Foerster (loc. cit.) inferred that $\mathrm{Mo}^{\mathrm{VI}}$ became on reduction dark emerald-green in 8 N -hydrochloric acid, and yellow or dark brown in $4-2 \mathrm{~N}$-solutions. At acid concentrations lower than 2 N , molybdenum-blue was formed. It is clear from the change in colour of the reduced products within the acid ranges 8-6 and 4-2N that a change in the molecular composition takes place. Since x, y, and z in the $4-2 \mathrm{~N}$-acid have double their values in the $8-6 \mathrm{~N}$-solutions, it is legitimate to assume that within the former range we have double rather than single molecules. It is probable that in the absence of concentrated hydrochloric acid to favour the formation of the anionic form(s), cations are abundantly formed which associate, however, in solution, forming the double molecules. The cell reaction in 8 - 6 N -acid may now be represented
by $\mathrm{MoO}_{2}{ }^{\bullet \bullet}+2 \mathrm{H}^{\bullet}=\mathrm{MoO}^{\bullet \bullet}+\mathrm{H}_{2} \mathrm{O}+e$, whereas in $4-2 \mathrm{~N}-\mathrm{acid}$ it may be $\left(\mathrm{MoO}_{2}{ }^{\bullet \bullet}\right)_{\mathbf{2}}+4 \mathrm{H}^{\bullet}=$ $\left(\mathrm{MoO}^{\bullet \bullet}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 e$, which does not, however, imply that portions of the ions are not present in the anionic forms.

Series I. (A) $\mathrm{HCl}=8.150 \mathrm{~m}, \mathrm{Mo}^{\nabla}=0.1364 \mathrm{~m}$.						
[$\mathrm{MoVr}^{\text {V1] }}$	$0 \cdot 1267$	$0 \cdot 1436$	$0 \cdot 1477$	0.1730	$0 \cdot 1857$	$0 \cdot 1940$
E.m.f.	$0 \cdot 4859$	$0 \cdot 4892$	$0 \cdot 4898$	$0 \cdot 4939$	$0 \cdot 4957$	$0 \cdot 4968$
Mean slope $=0.0571 ; x=1.02$.						
(B) $\mathrm{Mo}^{\mathrm{V}}=0.151 \mathrm{M}, \mathrm{Mo}^{\text {VI }}=0.151 \mathrm{~m}$.						
[H^{+}]	8.207	7.959	7.768	$7 \cdot 576$	$7 \cdot 385$	$7 \cdot 194$
E.m.f.	$0 \cdot 4735$	$0 \cdot 4664$	$0 \cdot 4604$	$0 \cdot 4544$	$0 \cdot 4484$	$0 \cdot 4421$
Mean slope $=0.1704 ; y=2.42$.						
(C) $\mathrm{HCl}=8 \cdot 150 \mathrm{~m}, \mathrm{Mo}^{\mathrm{VI}}=0.1962 \mathrm{~m}$.						
[$\mathrm{Mo}{ }^{\text {® }}$]	$0 \cdot 1364$	$0 \cdot 1063$	0.0871	0.0735	. 00631	0.0532
E.m.f.	$0 \cdot 4926$	$0 \cdot 4990$	$0 \cdot 5040$	$0 \cdot 5084$	0.5124	0.5169
Mean slope $=0.0598 ; z=1.00$.						
Series II. (A) $\mathrm{HCl}=7.998 \mathrm{~m}, \mathrm{Mo}^{\mathbf{V}}=0.0032 \mathrm{~m}$.						
[$\mathrm{MoVT}^{\text {F }}$	0.0032	$0 \cdot 0061$	$0 \cdot 0091$	0.0124	$0 \cdot 0149$	0.0179
E.m.f.	$0 \cdot 4656$	$0 \cdot 4828$	$0 \cdot 4933$	0.5018	0.5067	0.5116
Mean slope $=0.0615 ; x=0.98$.						
(B) $\mathrm{Mo}^{\mathbf{v}}=\mathrm{Mo}^{\text {VI }}=0.0032 \mathrm{M}$.						
[H^{+}]	7.998	$7 \cdot 615$	$7 \cdot 233$	6.850	$6 \cdot 468$	6.086
E.m.f.	$0 \cdot 4468$	$0 \cdot 4372$	$0 \cdot 4269$	$0 \cdot 4162$	$0 \cdot 4051$	0.3932
Mean slope $=0.1440 ; y=2 \cdot 21$.						
(C) $\mathrm{HCl}=7.998 \mathrm{~m}, \mathrm{Mo}^{\text {VI }}=0.0099 \mathrm{~m}$.						
$\left[\mathrm{Mo}^{\mathrm{V}}\right]$	0.0029	0.0058	$0 \cdot 0090$	0.0119	$0 \cdot 0150$	0.0197
E.m.f.	$0 \cdot 4838$	$0 \cdot 4669$	$0 \cdot 4564$	$0 \cdot 4496$	$0 \cdot 4440$	0.4375
Mean slope $=0.0554 ; z=1.08$.						
Series III. (A) $\mathrm{HCl}=3.00 \mathrm{~m}, \mathrm{Mov}^{\mathrm{v}}=0.0001 \mathrm{~m}$.						
$\left[\mathrm{Mo}^{\text {FIF }}\right.$]	0.0034	0.0063	0.0093	0.0122	0.0152	0.0181
E.m.f.	$0 \cdot 2907$	$0 \cdot 2990$	$0 \cdot 3041$	$0 \cdot 3078$	$0 \cdot 3107$	0.3132
Mean slope $=0.0309 ; x=1.94$.						
(B) $\mathrm{Mo}^{\mathbf{V}}=\mathrm{Mo}^{\text {VI }}=0.0032 \mathrm{M}$.						
[H^{+}]	$2 \cdot 00$	$2 \cdot 40$	$2 \cdot 80$	$3 \cdot 30$	$3 \cdot 60$	$4 \cdot 00$
E.m.f.	$0 \cdot 2720$	$0 \cdot 2820$	$0 \cdot 2908$	$0 \cdot 3003$	$0 \cdot 3052$	0.3113
Mean slope $=0.1305 ; y=4.18$ if $x=2$.						
(C) $\mathrm{HCl}=3 \cdot 122 \mathrm{~m}$, of $\mathrm{Mo}^{\mathbf{V I}}=0 \cdot 009 \mathrm{~m}$.						
$\left[\mathrm{Mo}^{\mathbf{v}}\right.$]	0.0031	$0 \cdot 0062$	$0 \cdot 0093$	0.0125	0.0156	0.0187
E.m.f.	$0 \cdot 3152$	0.3063	$0 \cdot 3012$	0.2976	0.2947	$0 \cdot 2924$
Mean slope $=0.0293 ; z=2.05$.						

(II) The Oxidation-Reduction Potential of Sexa-and Quinque-valent Molybdenum Ions.-On account of the presence of quinque-valent molybdenum in two forms within the acid ranges $8-6$ and $4-2 \mathrm{~N}$-hydrochloric acid, it is probable that the system $\mathrm{Mo}^{\mathrm{VI}} \mathrm{Mo}^{\nabla}$ will possess two redox potentials. In order to evaluate these potentials, series of cells were made in which the concentration ratio of sexa- and quinque-valent molybdenum ions and of hydrochloric acid were maintained constant but their actual concentrations were varied. In the following table representative results of measurements of cells where the acid concentrations were either 8-6 or $4-2 \mathrm{~N}$ are shown. The quinque- and sexa-valent molybdenum concentrations were equal to each other in each cell and were much lower than those of the acid.

HCl, N	$8 \cdot 16$	7.92	$7 \cdot 32$	7.00	6.70	$6 \cdot 12$
$\mathrm{Mo}^{\text {VI }}\left(\mathrm{Mo}^{\text {V }}\right) \times 10^{4}$	197.94	118.77	$63 \cdot 34$	$31 \cdot 67$	$15 \cdot 84$	$4 \cdot 75$
E.m.f.	$0 \cdot 4670$	$0 \cdot 4547$	$0 \cdot 4301$	$0 \cdot 4184$	$0 \cdot 4082$	$0 \cdot 3909$
HCl, N.	$3 \cdot 60$	$3 \cdot 30$	$3 \cdot 00$	$2 \cdot 70$	$2 \cdot 40$	$2 \cdot 10$
Movi $\left(\mathrm{Mov}^{\text {V }}\right.$) $\times 10^{4}$	128.27	$102 \cdot 61$	76.96	51.31	$25 \cdot 65$	$5 \cdot 15$
E.m.f.	$0 \cdot 3426$	0.3316	$0 \cdot 3194$	$0 \cdot 3072$	$0 \cdot 2955$	$0 \cdot 2835$

Results.-The cell reaction giving rise to the e.m.f. can be written as follows :

$$
\mathrm{MoO}_{2}{ }^{\bullet}+2 \mathrm{H}^{\bullet}+\mathrm{Cl}^{\prime}+\mathrm{Hg}=\mathrm{MoO}^{\cdots}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HgCl}
$$

The relation connecting the e.m.f. of the cell and the activities is represented by the equation

$$
\begin{equation*}
E=E_{0^{\prime}}+(\boldsymbol{R T} / n \boldsymbol{F}) \ln \frac{\left[\mathrm{MoO}_{2}{ }^{*}\right]\left[\mathrm{H}^{\prime}{ }^{\prime}{ }^{2}\left[\mathrm{Cl}^{\prime}\right]\right.}{\left.\left[\mathrm{MoO}^{*}\right]\right]} . \tag{1}
\end{equation*}
$$

in which $E_{0}{ }^{\prime}=E_{0}\left(\mathrm{Mo}^{\mathrm{VI}} / \mathrm{Mo}^{\mathrm{V}}\right)-E_{0}$ (calomel) and the brackets refer to activities. This equation can be written in the form

$$
\begin{equation*}
E-(\boldsymbol{R T} / n \boldsymbol{F}) \ln \left[\mathrm{H}^{\prime}\right]^{2}\left[\mathrm{Cl}^{\prime}\right]-(\boldsymbol{R T} / n \boldsymbol{F}) \ln \left[\mathrm{MoO}_{\mathbf{2}} \cdots\right] /\left[\mathrm{MoO}^{\cdots}\right]=E_{0}{ }^{\prime}+(\boldsymbol{R} T / n \boldsymbol{F}) \ln f_{2} / f_{1} \tag{2}
\end{equation*}
$$

In this equation $\left[\mathrm{MoO}_{2}{ }^{\bullet \bullet}\right]$ and $\left[\mathrm{MoO}^{\cdots}\right]$ refer to concentrations in mols. per litre and f_{1} and f_{2} are the respective activity coefficients. Since $\left[\mathrm{MoO}_{2}{ }^{*}\right]$ is made equal to $\left[\mathrm{MoO}{ }^{\bullet \bullet}\right]$ and $\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{Cl}^{\prime}\right]$ $=[\mathrm{HCl}]^{3} f^{3}{ }_{\text {Hol }}$, the above equation may be transformed into

$$
\begin{equation*}
E-\mathbf{3}(\boldsymbol{R T} / n \boldsymbol{F}) \ln [\mathrm{HCl}]=E_{0}^{\prime}+(\boldsymbol{R} T / n \boldsymbol{F}) \ln f_{2} f^{3}{ }_{\mathrm{H}} \mathrm{a} f_{1} . \tag{3}
\end{equation*}
$$

Extrapolation of the left-hand side in equation (3) against the square root of the ionic strength u to $u=\mathrm{O}$ should yield the value of $E_{0}{ }^{\prime}$, since at infinite dilution all activity coefficients become unity. The values of the left-hand side of the equation designated by the term $E_{0}{ }^{\prime \prime}$ as

plotted against \sqrt{u} are shown in the figure, but neither graphical nor theoretical extrapolation (using the least-square method) of either of the two curves leads to reliable results. However, the curves are of interest as they provide further evidence for the existence of two different forms within the two acid ranges.

Fouad I University, Faculty of Science, Abbassia, Cairo, Egypt.

